

CENTRE ORGANISATEUR Université de Lorraine

CONCOURS EXTERNE BAP C
Technicien classe normale

Epreuve d'admissibilité

Emploi-type:

Technicien-ne en instrumentation, expérimentation et mesure mesure

SESSION 2017

SUJET D'ADMISSIBILITE - Durée 3 heures - Coefficient 3

Lundi 29 mai 2017

	Note sur 20
N° d'anonymat :	
(ne rien inscrire)	
×	Anonymat
NOM :	
NOM DE NAISSANCE :	
Prénom :	
Né(e):	

INSTRUCTIONS:

Nous vous remercions de compléter les renseignements concernant votre identité sur la première page du sujet.

Hormis cet entête et conformément au principe d'anonymat, le sujet ainsi que les annexes jointes ne devront comporter <u>aucun signe distinctif</u>. Toute annotation distinctive ou mention d'identité portée sur toute autre partie de la copie conduira à l'annulation de votre épreuve.

Traitez les questions directement sur ce document en utilisant les zones prévues à cet effet.

Ce sujet comporte 41 pages dont 9 pages d'annexes (p : 33 à 41). Vérifiez en début d'épreuve le nombre de page de ce fascicule.

Le matériel autorisé pour cette épreuve est le suivant :

- calculatrice non-programmable,
- Règle 20 cm,
- Crayon de papier,
- Equerre,
- Compas.

L'usage du téléphone portable est formellement **INTERDIT**.

1 CULTURE GENERALE

1.1 Donner dans le tableau ci-dessous la signification des sigles ou acronymes indiqués :

Sigle ou acronyme	Signification
Exemple : OVNI	Exemple : Objet Volant Non Identifié
ITRF	
ВАР	
UMR	
CNRS	
CHSCT	
EPI	
EPC	
SST	
CAO	
DAO	
FAO	
Unité SI	

1.2 Compléter le tableau ci-dessous en donnant pour chaque grandeur l'unité de mesure et son symbole en unité SI :

Grandeur mesurée	Unité (SI)	Symbole de l'unité SI
Exemple : Intensité lumineuse	Candela	Cd
Temps		
Longueur		
Masse		
Température		
Intensité électrique		
Quantité de matière		

1.3 Compléter le tableau ci-dessous en indiquant pour chaque instrument, la grandeur physique mesurée ainsi que son unité :

Nom de l'instrument	Grandeur physique mesurée	Unité de mesure
Exemple : Chronomètre	Temps	Seconde
Pied à coulisse		
Manomètre		
Thermocouple		
Hygromètre		
pH-mètre		
Extensomètre		
Cellule de force		
Wattmètre		
Voltmètre		
Luxmètre		

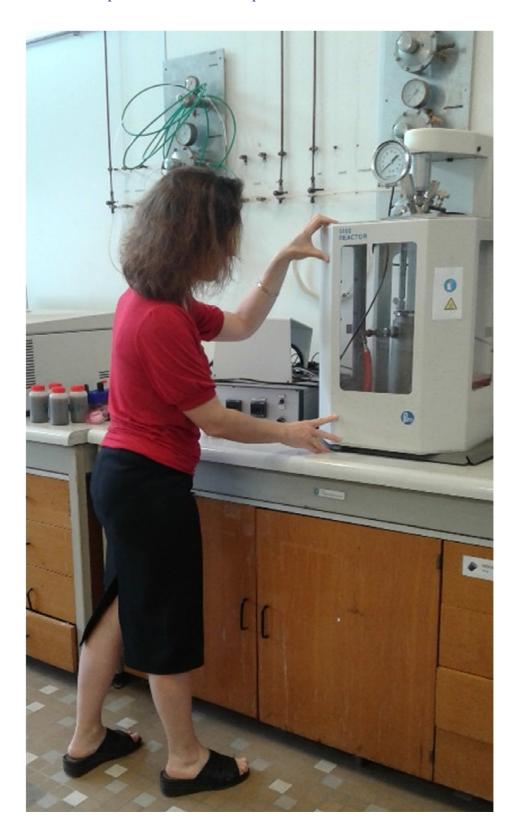
1.4 Citer trois grandeurs pouvant être mesurées avec un multimètre et donner leur unité :

Réponse :			

1.5 Dans le tableau ci-dessous, convertir dans les unités demandées :

Exemple: 1 kg	=	1000	g
300°C	=		K
1 atm	=		Pa
1 Pa	=		N/mm²
1 Pa	=		bar
1 m	=		μm
1 m ³	=		L
1 pouce	=		mm

2 HYGIENE ET SECURITE


2.1 Donner le sens des pictogrammes suivants :

Pictogramme	Signification
Exemple:	Exemple : Danger produit inflammable ou « je flambe »
43 +	
A ANK	
A	
*	

2.2 La photographie ci-dessous a été prise dans l'atelier mécanique d'un laboratoire de recherche. La personne sur la photographie travaille sur un réacteur haute pression-haute température.


2.2.1 Identifier trois manquements aux règles d'hygiène et de sécurité.

Réponse :
Manquement 1:
Planquement 1.
Manquement 2 :
Manquement 3:
2.2.2 Proposer des actions correctives.
Réponse :
Action corrective 1 :
Action corrective 2 :
Action corrective 3:
2.3 Citer trois équipements de protection utilisés dans un laboratoire de chimie
2.6 Greet cross equipositions de procession democs dans un taborator e de cimine
Réponse :
repolise i

3 MECANIQUE

3.1 D'après la photographie du pied à coulisse ci-dessous, donner la longueur mesurée :

Réponse :			

3.2 D'après la photographie du micromètre ci-dessous, donner la longueur mesurée :

Réponse :			

3.3 D'après les vues fournies ci-dessous, dessiner la coupe C-C :

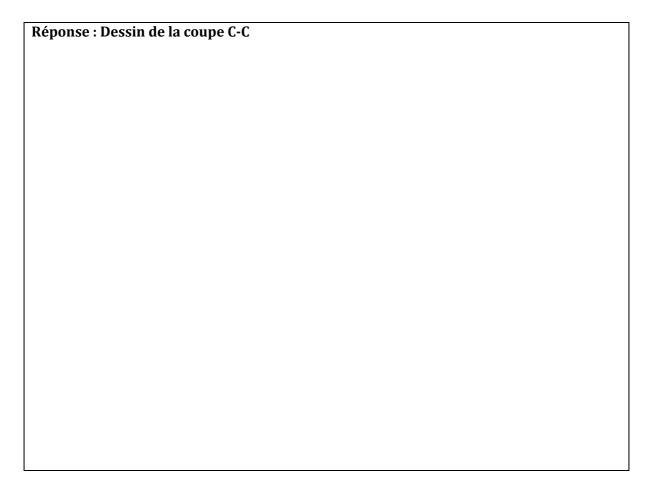



Figure 1 : Plan d'une rallonge démontable à la main

3.4 La pièce donnée dans la question précédente est utilisée comme rallonge avec une presse. Cette rallonge est démontable à la main. Elle s'accouple avec la cellule de charge au travers d'un tenon cylindrique de classe h6 et une goupille (Figure 2).

Figure 2: Tenon cylindrique de classe h6 et sa goupille

3.4.1 En utilisant le tableau 14.25 de l'annexe 1, déterminer la classe d'ajustement.

Réponse :

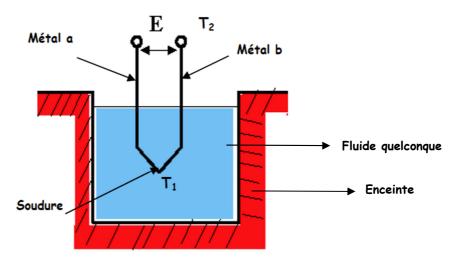
3.4.2 En utilisant le tableau 14.26 de l'annexe 1, ajouter la tolérance à la cotation du détail G <u>dans le cadre prévu sur la figure 1</u> de la page précédente.

	diamètre 6 mm et de longueur 25 mm est testé en traction.
3.5.1	En utilisant l'annexe 2, calculer l'allongement quand l'échantillon atteint sa limit d'élasticité.
Répor	ise:
3.5.2	Calculer la force maximale que peut supporter l'échantillon.
Répoi	

3.5 Essai de traction sur cylindre : un échantillon cylindrique, en acier 1045, de

3.6 Que représente le module d'Young d'un matériau?

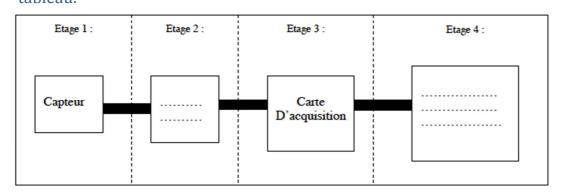
Répo	onse :
3.7	Citer un essai permettant de mesurer le module d'Young d'un matériau
	isotrope:
Répo	onse :
3.8	Utilisation d'une clé dynamométrique : une vis de diamètre 10 mm et de
	classe 8,8 doit être serrée avec un couple de 36 N.m. Nous disposons d'une clé dynamométrique avec un bras de levier de 30 cm. Calculer la force
	nécessaire pour atteindre le couple de serrage demandé.
	necessaire pour attenuare le couple de serrage demande.
Répo	onse :



4 INSTRUMENTATION

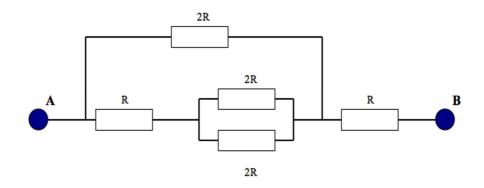
4.1 Citer deux types de thermocouples et donner leur gamme d'utilisation :

Réponse :			

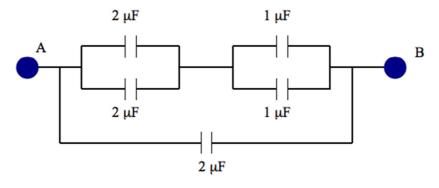

4.2 En vous aidant du schéma ci-dessous, expliquer brièvement le principe de mesure de la température

Réponse:		

4.3 Le schéma ci-dessous représente une chaîne d'acquisition de données. On reprend dans un tableau le nom du matériel impliqué à chaque étage ainsi que l'action associée. Compléter les cinq informations manquantes du tableau.

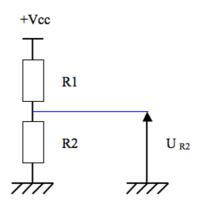


Matériel Etage 1	Capteur
Action 1	Transforme une grandeur physique en grandeur électrique
Matériel Etage 2	
Action 2	
Matériel Etage 3	Carte d'Acquisition
Action 3	
	•
Matériel Etage 4	
110001101 20080 1	
Action 4	


5 Electronique / électricité

5.1 Calculer la résistance équivalente entre les ponts A et B du montage suivant :

Réponse :

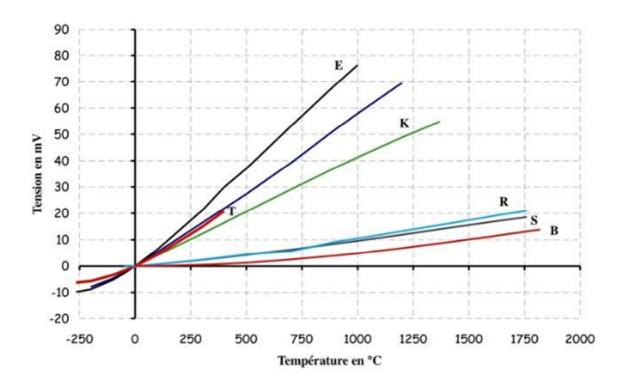

5.2 Calculer la capacité équivalente entre les ponts A et B du montage suivant :

Réponse :

5.3 Soit le montage suivant :

5.3.1 Comment appelle-t-on ce type de montage?

Réponse :			


5.3.2 Calculer la tension U_{R2} pour $+V_{cc} = 5V$, $R_1 = 100 \Omega$, $R_2 = 50 \Omega$.	
Réponse :	

5.4 Donner la définition de la « sensibilité » S d'un capteur.

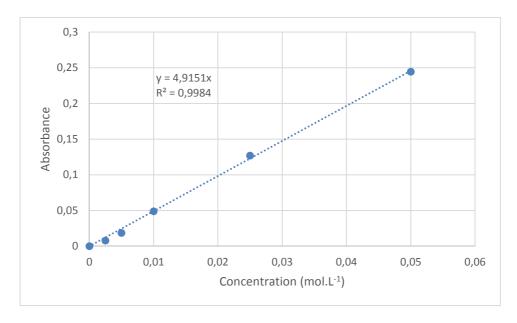
Réponse :	

5.5 Le graphique ci-dessous représente la réponse de plusieurs capteurs notés B, E, K, R, S, T.

5.5.1 Comment peut-on obtenir la sensibilité S du capteur K d'après ce graphique ?

3.3.1	Comment peut-on obtenii la sensibilite 3 du capteur K d'après ce graphique :
Répor	nse:

5.5.2 Donner la valeur de la sensibilité du capteur K.


Réponse :			

5.6 Lecture d'une courbe d'étalonnage :

On souhaite déterminer la concentration d'une solution de chlorure de cobalt $(CoCl_2)$ de concentration inconnue. Pour cela on utilise un spectrophotomètre et on travaille à une longueur d'onde de 510 nm.

On réalise au préalable une courbe d'étalonnage à partir de cinq solutions étalons de chlorure de cobalt de concentrations connues. On obtient la droite suivante :

On mesure maintenant l'absorbance de la solution de concentration inconnue; elle vaut 0,1597.

Que vaut la concentration de la solution inconnue?

Réponse :		

6 MATERIAUX

6.1 Classer les six matériaux suivants du moins conducteur électrique au plus conducteur électrique :

Fer - Or - Argent - Plomb - Aluminium - Cuivre

Rang	Nom du matériau
1 (Moins bon conducteur électrique)	
2	
3	
4	
5	
6 (Meilleur conducteur électrique)	

6.2 Classer les matériaux suivants du plus conducteur thermique au moins conducteur thermique à une température de 20°C :

Liège - Fer - Argent - PVC - Plomb - Zinc - Marbre - Cuivre

Rang	Nom du matériau
1 (Meilleur conducteur thermique)	
2	
3	
4	
5	
6	
7	
8 (Moins bon conducteur thermique)	

6.3 Compléter le tableau suivant en renseignant le nom des éléments constituant l'alliage :

Nom	Constituants
Exemple: Virenium	Cuivre + Zinc + Nickel
Ferrotitane	
Fonte	
Laiton	
Acier	
Bronze	
Acier inoxydable	
Electrum	
Invar	

7 CHIMIE

- **7.1** Calcul de pH
- **7.1.1** Un technicien a préparé 500 mL d'une solution d'acide chlorhydrique (HCl) de concentration 0,01 mol.L⁻¹. Il prélève 42 mL de cette solution qu'il complète à 500 mL avec de l'eau.

Quel est le pH de la solution initiale d'acide chlorhydrique et quel est le pH de la deuxième solution d'acide chlorhydrique ?

Réponse :	

Donnée : Ka (CH₃COOH	/ G113G00) = .	1,70.10			
Réponse :					
7.2 Préparation de	solutions	: Calcul de co	ncentratio	n.	
Oonnées :					
lément	Н	N	0	Na	S
lasse molaire (g.mol	-1) 1	14	16	23	32
.2.1 Un technicien (NaOH) dissou	a réalisé u	ne solution à	partir de 4		oxyde de sod
'. 2.1 Un technicien (NaOH) dissou	a réalisé u	ne solution à	partir de 4		oxyde de sod
7.2.1 Un technicien (NaOH) dissou	a réalisé u	ne solution à	partir de 4		oxyde de sod
7.2.1 Un technicien (NaOH) dissou Réponse: 7.2.2 Un technicien à 0,06 mol.L-1	a réalisé u s dans 500 m a réalisé une mélangés à 4	ne solution à mL d'eau. Cal e solution à pa 400 mL d'acid	partir de 4 culer sa conc	mL d'acide si	oxyde de sod mol.L ⁻¹ : ulfurique (H ₂ S
7.2.1 Un technicien (NaOH) dissou Réponse: 7.2.2 Un technicien à 0,06 mol.L-1 n Calculer sa cor	a réalisé u s dans 500 m a réalisé une mélangés à 4	ne solution à mL d'eau. Cal e solution à pa 400 mL d'acid	partir de 4 culer sa conc	mL d'acide si	oxyde de sod mol.L ⁻¹ : ulfurique (H ₂ S
7.2.1 Un technicien (NaOH) dissou Réponse: 7.2.2 Un technicien à 0,06 mol.L-1	a réalisé u s dans 500 m a réalisé une mélangés à 4	ne solution à mL d'eau. Cal e solution à pa 400 mL d'acid	partir de 4 culer sa conc	mL d'acide si	oxyde de sod mol.L ⁻¹ : ulfurique (H ₂ S

 $\textbf{7.1.2} \quad \text{On dispose d'une solution de 2 litres d'acide acétique (CH$_3$COOH)} \quad \text{de}$

7.2.3	Un technicien doit préparer 500 mL d'une solution aqueuse d'hydroxyde de
	sodium (NaOH) à 0,25 mol.L-1. Quelle masse de NaOH doit-il peser ?
Répo	nse:
7.2.4	Quelle masse et quel volume d'acide sulfurique (H ₂ SO ₄) pur à 98% (en masse) et
	de densité 1,84, faut-il prélever pour préparer 1,0 L d'une solution de H ₂ SO ₄
	à 5.10 ⁻³ mol.L ⁻¹ ?
Répor	ise:
_	
1	

7.3 A quels atomes font référence les symboles chimiques suivants :

Symbole	Atome
Cu	
Al	
Au	
Се	
0	
Ti	
Ве	
Ni	
Mn	
Sn	

7.4 Classification des couples redox.

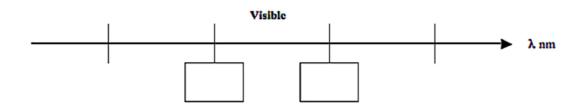
Voici une liste de huit couples redox (ou oxydant-réducteur) et leur potentiel redox standard :

Couple Redox	Ag+/Ag	Ca ²⁺ /Ca	Cr ²⁺ /Cr	Fe³+/Fe	Ir³+/Ir	Ni ²⁺ /Ni	Pt ²⁺ /Pt	Zn ²⁺ /Zn
Potentiel Redox E ⁰	0,799 V	2,868 V	- 0,913 V	- 0,037 V	1,156 V	- 0,257 V	1,180 V	- 0,761 V

	Quels sont les trois oxydants les plus forts ?	
Répons	; :	
7.4.2	Quels sont les trois réducteurs les plus forts ?	
Répons):	
8 SC	FNCFS PHYSIOHES	
8.1 E	IENCES PHYSIQUES rrire l'équation d'état des gaz parfaits en précisant chaque terme et nité :	SO
8.1 Edu	rire l'équation d'état des gaz parfaits en précisant chaque terme et nité :	SO
8.1 Edu	rire l'équation d'état des gaz parfaits en précisant chaque terme et nité :	SO
8.1 Edu	rire l'équation d'état des gaz parfaits en précisant chaque terme et nité :	SO
8.1 Edu	rire l'équation d'état des gaz parfaits en précisant chaque terme et nité :	so
8.1 Edu	rire l'équation d'état des gaz parfaits en précisant chaque terme et nité :	SO
8.1 Edu	rire l'équation d'état des gaz parfaits en précisant chaque terme et nité :	SO
8.1 Ed	rire l'équation d'état des gaz parfaits en précisant chaque terme et nité :	SO
8.1 Ed	rire l'équation d'état des gaz parfaits en précisant chaque terme et nité :	SO
8.1 Ed	rire l'équation d'état des gaz parfaits en précisant chaque terme et nité :	SO
8.1 Ed	rire l'équation d'état des gaz parfaits en précisant chaque terme et nité :	so
8.1 E	rire l'équation d'état des gaz parfaits en précisant chaque terme et nité :	SO

soupape s'ouvrira-t-el	eine, et oubliée au soleil, le?	a quone comperature
éponse :		
.3 Compléter le tableau s	uivant :	
Domaine de pression	Dénomination du vide	Exemple de pompe
10 mbar à 10 ⁻³ mbar		
10 ⁻³ mbar à 10 ⁻⁷ mbar		
10 ⁻⁷ mbar à 10 ⁻¹² mbar		
4 En photographie, qu'a	ppelle-t-on « profondeur de	champs » ?
éponse :		

8.2 Une bouteille d'oxygène est normalement remplie sous pression de 20 MPa

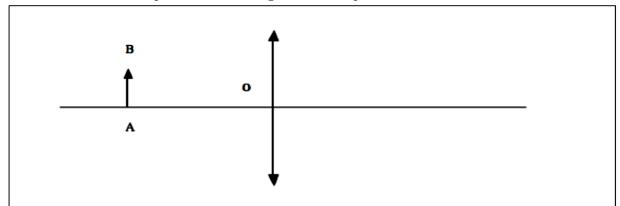

à 20°C. La soupape de sécurité est réglée pour s'ouvrir dès que la pression

8.5 Comment peut-on modifier la profondeur de champs?

Réponse :			

8.6 Sur l'échelle de longueur d'onde ci-dessous, indiquer en nanomètre les limites approximatives du rayonnement visible et situer celles des infrarouges et ultraviolets.

- **8.7** Un faisceau laser se propageant dans l'air (indice $n_1=1$) arrive à une interface air-verre avec un angle d'incidence $i_1=30^\circ$.
- **8.7.1** Dessiner sur un schéma le cheminement du faisceau


Réponse :		

0 = 0	0 11 (1 1	1 1/ 1 1	/ C	1 (* 1)	4 500 0
8.7.2	Ouelle est la valeur	r de l'angle de r	efraction 12 dans	le verre (indice no	= 1.501 ?

Réponse :			

- **8.8** Soit un objet réel A situé avant le foyer objet d'une lentille convergente de focale **F** ' et de centre **O**.
- **8.8.1** Déterminer la position de l'image A' en complétant le schéma ci-dessous.

8.8.2 En détaillant les calculs, donner la distance **OA'** pour un objet situé à 18 cm de la lentille de distance focale 6 cm :

Réponse :

9 ANGLAIS

Après avoir lu le document en annexe 3 veuillez répondre **EN FRANCAIS** aux questions suivantes :

9.1 Traduire l'extrait suivant issu du document en annexe 3.

Figure 7. Externally Conditioned Transducer (Fullscale > 0.9V) Simple Connection

Many more sophisticated and complex transducers, such as accelerometers, video extensometers, pyrometers, and so on, will have their own unique electronic control box to provide the necessary excitation and condition the signal into a usable form. Generally the signal that will be presented to the controller will be a simple analogue voltage, proportional to the physical attribute being measured. All these types of device can be treated in the same way, depending only on the range of output voltages expected.

- For high-level outputs, where the expected Full Scale output is 0 0.9V or greater, use the wiring shown in Figure 7.
- For low-level outputs, where the expected Full Scale output is 0 240mV or less, use the wiring shown in Figure 8.

Réponse :	

	une sortie analogique 0-10V ?
Répo	onse :
9.3	Quel(s) pin(s) du connecteur doi(ven)t être relié(s) au capteur?
Répo	onse :
9.4	Faut-il employer un câble blindé et si oui faut-il relier le blindage a connecteur ?
Répo	onse :

9.2 Dans le document fourni en annexe 3, quelle figure doit être choisie pour

connecter un capteur conditionné (électronique intégrée au capteur) avec

ANNEXE 1

ARBRES	a 11	1113	6 p	01 b	d 11	6.7	8 9	6.9	9 1	1.1	8 +	9.5	9 6	h 5	h 6	h 7	h 8	h 9	h 10	11 4	h 13	9	is 5	js 6	js 9	× 5	k 6	B 5	a 6	9 u	9 d
Jusqu'à 3 inclus	- 270	- 60	- 20	- 20	- 20	- 14	- 14	- 14	- 6	- 6 - 16	- 6 - 20	- 6	- 8	- 4	9 -	- 10	- 14	- 25	- 40	09 -	0 - 140	+ 4	± 2		+ 12		9 0	+ 6	+ + 8	+ 10	+ 12
3 a 6 inclus	- 270	- 70	- 30	- 30	- 30	- 20	- 20	- 20	- 10	- 10	- 10	4 6	- 12	0.0	0 80	- 12	0 -	- 30	0 - 48	- 75	- 180	+ 6	± 2,5		+ 15		+ +	+ + 9	+ 12	+ + 8	+ 20
6 à 10	- 280	- 80	- 40	- 40	- 40	- 25	- 25	- 25	- 13	1.1	- 13	1.1	14	0 9	1	- 15	- 1	. 1	58	1	220	+ 7	+,	+	+ 18	+ +	+ +	+ 12 + 6	+ +	+ 19	+ +
10 a 18	- 290	- 95	- 50	- 50	- 50	9.3	- 32	- 32	- 16	1. 1.	43	- 14	6 . 17		1	- 18	. 1	- 43	0 - 70	1	270	+ 1	+1	+ 5,5	+ 21		+ 12	+ 15	+ 18	+ 23	+ 29
18 à 30	- 300	- 110	- 65	- 65	15	40	- 40	40 92	1. f.	1: 1:	- 53	- 16	- 2	1		- 21	9	- 52	-1	- 130	- 330	+ - 0 4	+ 4,5	+	+ 26	+ +	+ +	+ +	+ 21	+ 28	+ -
30 a 50	- 320	- 130	- 80	- 180	- 80	- 50	- 50	- 50	25	6.6	25	- 9	- 25	- 10	0 - 16	- 25	- 39	- 62	001-	160	390	- 1	+ 5,5		+ 31	1000	+ 18	+ 20	+ 25	+ 33	+ 42
50 à 80	- 360	150	- 100	- 100	- 100	06 -	- 60	- 60	- 30	30	- 30	- 10	- 10	- 13	0 - 19	30	0 - 46	74	120	190	0 - 460	+ 12	+ 6,5	+ 9.5	+ 37	+ 15	+ 21	+ 24	+ 30	+ 39	+ 51
80 à 120	410	180	- 120	- 120	- 120	- :72	- 72	- 72	- 36	- 36	- 36	- 12	- 12	- 15	- 22	- 35	- 54	- 87	- 140	- 220	- 540	+ 13	+ 7,5		+ 43		+ 25	+ 28	+ 35	+ 45	+ 59
120 a 180	- 580	- 230	- 145	- 145	- 145	- 85	- 85	- 85	- 43	- 43	- 43	- 14	- 14	- 18	- 25	- 40	0 - 63	0 - 100	0 - 160	- 250	- 630	+ 14	6 +	-	+ 125		100	+ 33	+ 40	+ 52	+ 68
180 à 250	- 820 - 950	- 280	- 170	- 170	- 170	- 100	- 100	- 100 - 215	- 50	96 -	- 50	- 35	- 15	- 20	- 29	-, 46	- 72	- 115	- 185	- 290	- 720	+ 16	± 10	-	+ 145		45011	+ 37	+ 46	+ 60	+ 79
250 à 315	- 1 050 - 1 240	- 330 - 620	- 190 - 320	- 190	- 190 - 510	- 110	- 110 - 191	- 110 - 240	- 56	901 -	- 56	- 40	- 49	- 23	- 32	- 52	0 - 81	- 130	- 210	- 320	0 - 810	+ 16	± 11,5		+ 160			+ 43	+ 52 + 20	+ 66	+ +
315 a 400	- 1350	- 400 - 720	- 210 - 350	- 210	- 210 - 570	- 125	- 125	- 125	- 62 - 98	- 62 - 119	- 62	- 43	- 18	- 25	- 36	0 - 57	0 - 89	- 140	- 230	0 - 360	0 - 890	+ 18	± 12,5		+ 180			+ 46	+ 57	+ 73	+ + 38
400 a 500	- 1650 - 1900	- 480 - 840	- 230 - 385	- 230 - 480	- 230 - 630	- 135	- 135 - 232	- 135 - 290	- 68 - 108	- 68 - 131	- 165	- 20	- 20	- 27	- 40	- 63	0 - 97	- 155	- 250	- 400	0.00 -	+ 20	± 13,5		17 +	1		+ 50 + 23	+ 63	+ + 40	+ 108

	15 ==	
	teintées.	
10000	s qualités	
1000000	préférence les	

-															-
artre	Pièces	dont le	fonct	ionnement	nécessi	te un g	rand jet	u (dila	ntation,	3				6	=
e, j j, en	mauvais	aligne	ment,	mauvais alignement, portées très longues, etc.).	ès longue	es, etc.).				p				6	-
s mob	Cas ord	inaire	des pi	ordinaire des pièces tournant	nant ou	glissant dans une bague ou	dans u	ine ba	no and	8		7	80	6	
	palier (I	oon gra	issage	palier (bon graissage assuré).						f	9	1-9	7		
aun,	Pièces	avec gu	idage	Pièces avec guidage précis pour mouvements	r mouver	ments de	de faible amplitude	amplit	tude	6	2	9			
						2	ise en		e pos-	£	5	9	7	8	
	Démontage	age et	et re-	L'emm	L'emmanchement ne peut pas trans-		sible à la	a main		sį	5	9		,	
	sans dété		ation	mettre d'effort	effort	_	Mise	nlare	100	×	5				
alidor 1 é tr						E	03			E		9			
						Σà	Mise en	place	a la	d		9			
							Mise en		place à la	s			7		-
un,j	Démontage impos- sible sans détério-	age In	npos- tério-	peut 1	L'emmanchement peut transmettre		tion (vérifier que les	fier qu	que les	n			7		
	ration des pièces	es piec	s,	des ettorts	rts	3 8 8	au métal ne dépassent pas la limiteélastique)	ne dépa iteélas	assent stique)	×			7		
4 ₪ 26	Р	PRINCIPAUX	IPAU	X ÉCARTS	RTS EN	Ĭ	MICROMETRES	TRE	S		Tempéra	Température de référence : 20 °C	ence : 20	3,1	
ALÉSAGES	Jusqu'à	3 à 6 inclus	6 à 10	0 10 3 18	18 à 30	30 à	50 50 à 80	100000	80 à 120	120 à 180	180 à 250	250 à 315	315 à 400	0	400 à 500
D 10	+ 60	7.7	++	98 + 120	+ 149	+ 180	++	220	+ 260	+ 305	+ 355	+ 400	++	440	+ 480
F.7	++	+ 22	++	13 + 34	+ 41	++	++	30	+ 71	++	+ +	+ 108	++	119	+ 131
99			++	++	++	++	++		+ 34	+ 39	+ 44	+ 49	++	54	+ 60
9 H	+	+	+	+	+	+	+		+ 22	+ 25	+ 29	+ 32	+	36	+ 40
H7	+ 10	+ 12	+	+	+	+	+		+ 35	+ 40	+ 46	+ 52	+	57	+ 63
н8	+ 14	+ 18	+	+	+ 33	+ 38	+	46	+ 54	+ 63	+ 72	+ 8	+	88	+ 97
6 н	+ 25	+ 30	+	36 + 43	+ 52	+	+	74	+ 87	+ 100	+ 115	+ 130	+	140	+ 155
H 10	+ 40	+ 48	+	+	+	+ 100	+		+ 140	+ 160	+ 185	+ 210	+ 5	230	+ 250
H11	90 +	+ 75	+	+	+ 130	+ 160	+	190	+ 210	+ 250	+ 290	+ 320	+ 3	360	+ 400
н12	+ 100	+ 120	+	+	+ 210	+ 250	+	300	+ 350	+ 400	+ 460	+ 520	+ 5	570	+ 630
H 13	+ 140	+ 180	+	+	+ 330	+ 390	+ 460		+ 540	+ 630	+ 720	+ 810	+ 890	06	+ 970
17	+ 1	+ 1	+ 1	+ 1	+ 1	+ 1	-	-	+ 22	+ 26	+ 30	+ 36	+ 1	39	+ 43
K6	09	+1	+ 1	+ 1	+ 1	+ 1	+ 1		+ 4	+ 4	+ 5	+ 5	+ 1	29	+ 32
K7	05	+ 1	+ 1	+ 1	+ 1	+ 1	+ 1		+ 10	+ 12	+ 133	+ 16	+ 1	17	+ 1
M7	172	- 120	1	1	- 21	1	- 1	300	- 35	- 40	- 46	- 52	1	57	- 63
N.7	44	1 16	11	11	- 28	1.1	1.1		- 10	- 12 - 52	- 14	- 14	1.1	16	- 17
6 N	- 29	300	- 1	1	- 1	1	- 1	0 4/	- 87	- 100	- 115	- 130	-	140	- 155
9 d	12	- 17	1.1	1.1	1.1	1.1	1.1	26	- 30	- 36 - 61	- 41	- 47 - 79	1 1	51	- 55
P7	99	- 20	1.1	1.1	- 14	1.1	1.1	-	- 24	- 28 - 68	- 33 - 79	- 38	1.1	98	- 45
0.0	6	13				20			27	4.9	50	56	1	60	- 68

ANNEXE 2

TABLEAU 1 Propriétés physiques de quelques matériaux ferreux

(Conversions approximatives en unités SI des tables de Statics & strength of materials, de Milton G. Bassin; Steel, Stainless steel, aluminium, nickel, copper, brass Reference book 16, de la compagnie Drummond, McCall; Aciers inoxydables Atlas Données techniques, de la compagnie Aciers Atlas)

	$\sigma_{\!\scriptscriptstyle \mathrm{u}}$ (ou	$\sigma_{\!\scriptscriptstyle m LE}$	E	G	ρ	α	μ
	τ _α (MF		(MPa)	(GPa)	(GPa)	×10 ³ (kg/m ³)	×10 ⁻⁶ (/°C)	
Acier (construction)	Tension	448						
AISI 1020 (laminé à chaud)	Compression	(-)448	310	207	79	7,8	11,7	0,288
(faible % de carbone)	Cisaillement	345						
Acier	Tension	655						
AISI 1045 (laminé à chaud)	Compression	(-)655	414	207	79	7,8	11,7	0,288
(% moyen de carbone)	Cisaillement	483		7		0.000		
Acier	Tension	979						
AISI 1095 (laminé à chaud)	Compression	(-)979	572	207	79	7,8	11,7	0,288
(% élevé de carbone)	Cisaillement	724		000000	1000		00000	
Acier	Tension	621						
AISI 4140 (laminé à chaud)	Compression	(-)621	441	207	79	7,8	11,7	0,288
(% tmoyen de carbone)	Cisaillement			10000000	8/8/6			10000
Acier	Tension	579						
inoxydable	Compression	(-)579	241	190	76	7,8	17,3	0,305
304	Cisaillement			535556	19379	10000000	19801 fee	0.05000
	Tension	324						
Fer forgé	Compression	(-)324	193	193	69	7,8	11,5	0,278
10.00	Cisaillement	262	0000000	20000			9777	
Fonte	Tension	138						
classe 20	Compression	(-)552		76	31	7,8	11,3	0,270
	Cisaillement	221				6	250	15
Fonte	Tension	276	1 - 3 - 3 - 3 - 3 - 3					
classe 40	Compression	(-)862		110	38	7,8	11,3	0,270
	Cisaillement	379				6	350	
Fonte	Tension	414			COS			
classe 60	Compression	(-)1172		131	55	7,8	11,3	0,270
	Cisaillement	448						,

 $[\]sigma_{LE}$ est la contrainte de limite élastique. Au-delà de cette contrainte, l'équation $\sigma = E\varepsilon$ ne s'applique plus et il y a une déformation permanente du matériau.

σ_u est la contrainte ultime, c'est-à-dire maximale que peut supporter le matériau. À partir de cette contrainte, le matériau ne résiste plus et le processus de rupture est amorcé.

E est le module d'élasticité ou module de Young (tension ou compression).

G est le module de rigidité en cisaillement.

 $[\]rho$ est la densité ou masse volumique : ρ = masse / volume .

 $[\]alpha$ est le coefficient de dilatation linéaire. μ est le coefficient de Poisson : $\mu = \varepsilon$, $/ \varepsilon$.

ANNEXE 3

Chapter 3

Connecting User Transducers Using Simple Connections

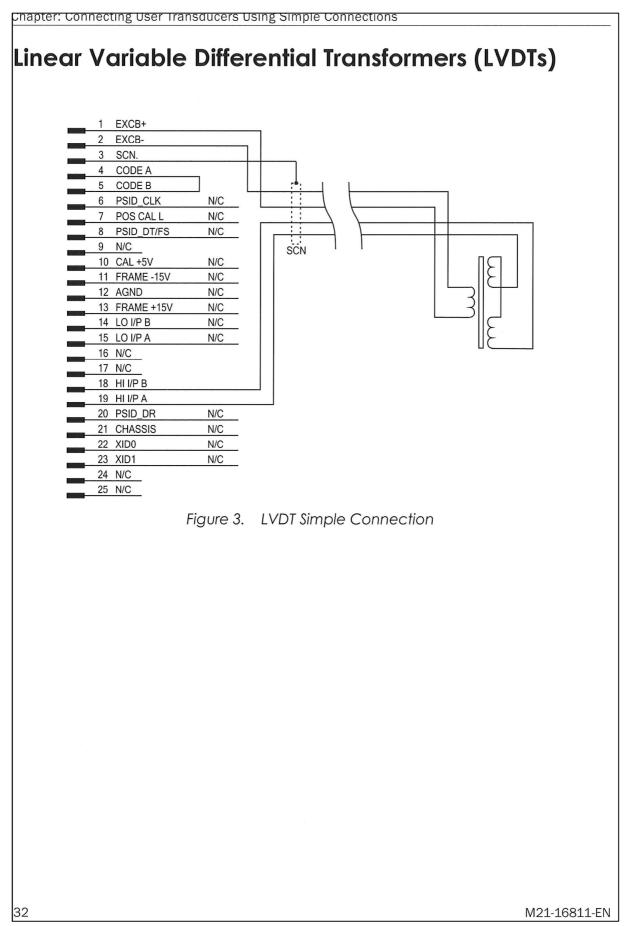
•	About Simple Connection	31
•	Linear Variable Differential Transformers (LVDTs)	32
•	Inductive Half Bridge Transducers	33
•	Full Bridge Strain Gauges	34
•	Half Bridge Transducers	35
•	Externally Conditioned Transducers	36

About Simple Connection

This is the most straightforward way of connecting user transducers and only requires a 25-Way D-type plug. A wire link is used to indicate that the transducer is connected to the controller. With the link fitted, when the transducer is plugged in, it is detected as a user transducer.

Refer to one of the circuit diagrams (see Figure 3 to Figure 8) to wire up your transducer. For best immunity against noise and EMC it is recommended that a double screened cable is used. Connect the inner screen to pin 3 (screen). Connect the outer screen to the metal body and backshell of the 25-way connector (chassis ground). **Do NOT make any connection between pin 3 and chassis ground.**

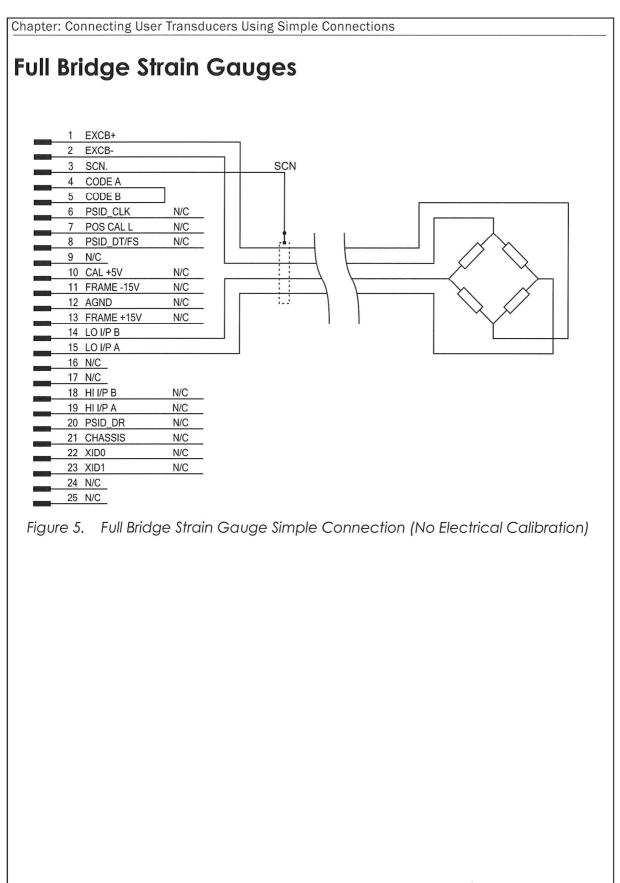
Plug your transducer into the appropriate socket. You may now proceed with the calibration of your transducer. You calibrate your transducer using Console software. Refer to the Console Online help for further guidance.



- Simple connection does not support all calibration methods.
- Not all transducers can use all calibration options. Refer to "Transducer Characteristics" on page 20.

Product Support: www.instron.com

31



Product Support: www.instron.com

Linear Variable Differential Transformers (LVDTs) Inductive Half Bridge Transducers EXCB+ EXCB-SCN 3 SCN. 4 CODE A CODE B N/C 6 PSID_CLK 7 POS CAL L N/C 8 PSID_DT/FS N/C 9 N/C 10 CAL +5V N/C 11 FRAME -15V N/C 12 AGND N/C 13 FRAME +15V N/C 14 LO I/P B 15 LO I/P A N/C 16 N/C 17 N/C 18 HI I/P B 19 HII/PA 20 PSID_DR N/C 21 CHASSIS 22 XID0 N/C 23 XID1 N/C 24 N/C 25 N/C Figure 4. Inductive Half Bridge Transducer Simple Connection

33

M21-16811-EN

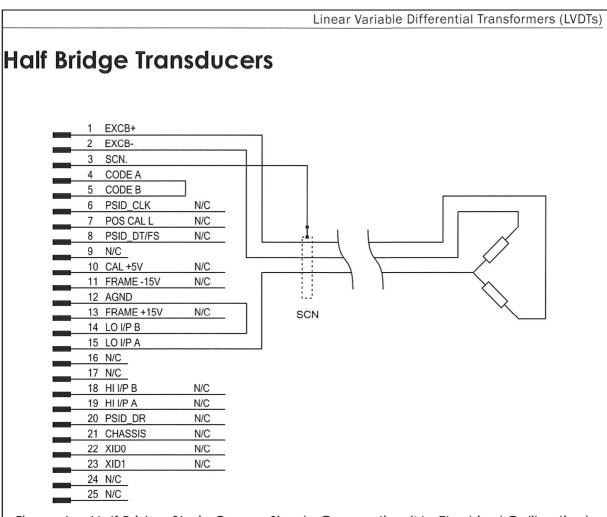


Figure 6. Half Bridge Strain Gauge Simple Connection (No Electrical Calibration)

Product Support: www.instron.com

35

Chapter: Connecting User Transducers Using Simple Connections

Externally Conditioned Transducers

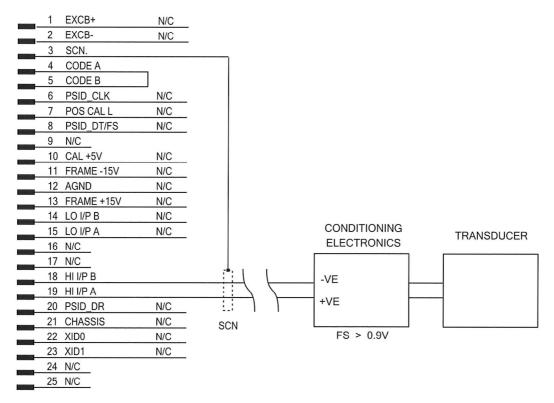


Figure 7. Externally Conditioned Transducer (Fullscale > 0.9V) Simple Connection

Many more sophisticated and complex transducers, such as accelerometers, video extensometers, pyrometers, and so on, will have their own unique electronic control box to provide the necessary excitation and condition the signal into a usable form. Generally the signal that will be presented to the controller will be a simple analogue voltage, proportional to the physical attribute being measured. All these types of device can be treated in the same way, depending only on the range of output voltages expected.

- For high-level outputs, where the expected Full Scale output is 0 0.9V or greater, use the wiring shown in Figure 7.
- For low-level outputs, where the expected Full Scale output is 0 240mV or less, use the wiring shown in Figure 8.

36 M21-16811-EN

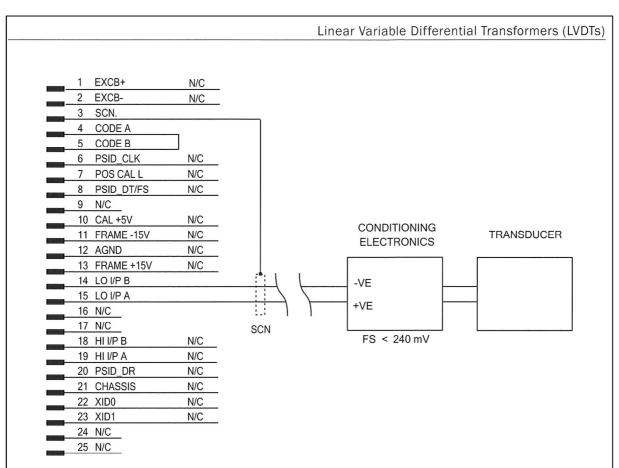


Figure 8. Externally Conditioned Transducer (Fullscale < 240mV) Simple Connection

Product Support: www.instron.com

37